应用计量经济学的常见问题

IQ菌 2016-09-18 14:45 互联网金融 来源:思达派 查看原文

不知从何时起,解答计量问题成了我日常生活的一部分。天南海北的读者与同道提出了各种各样的计量问题。这里摘取少量的典型问题,希望对从事实证研究的朋友有帮助。

嘿,计量经济学!

1在什么情况下,应将变量取对数再进行回归?

第一,如果理论模型中的变量为对数形式,则应取对数。比如,在劳动经济学中研究教育投资回报率的决定因素,通常以工资对数为被解释变量,因为这是从Mincer模型推导出来的。

第二,如果变量有指数增长趋势(exponential growth),比如 GDP,则一般取对数,使得 lnGDP 变为线性增长趋势(linear growth)。

第三,如果取对数可改进回归模型的拟合优度(比如 R2 或显著性),可考虑取对数。

第四,如果希望将回归系数解释为弹性或半弹性(即百分比变化),可将变量取对数。

第五,如果无法确定是否该取对数,可对两种情形都进行估计,作为稳健性检验(robustnesscheck)。若二者的回归结果类似,则说明结果是稳健的。

2在一些期刊上看到回归模型中引入控制变量。控制变量究竟起什么作用,应该如何确定控制变量呢?

在研究中,通常有主要关心的变量,其系数称为 “parameterof interest” 。但如果只对主要关心的变量进行回归(极端情形为一元回归),则容易存在遗漏变量偏差(omittedvariable bias),即遗漏变量与解释变量相关。加入控制变量的主要目的,就是为了尽量避免遗漏变量偏差,故应包括影响被解释变量 y 的主要因素(但允许遗漏与解释变量不相关的变量)。

3很多文献中有 “稳健性检验” 小节,请问是否每篇实证都要做这个呢?具体怎么操作?

如果你的论文只汇报一个回归结果,别人是很难相信你的。所以,才需要多做几个回归,即稳健性检验(robustness checks)。没有稳健性检验的论文很难发表到好期刊,因为不令人信服。稳健性检验方法包括变换函数形式、划分子样本、使用不同的计量方法等,可以参见我的教材。更重要的是,向同领域的经典文献学习,并模仿其稳健性检验的做法。

4对于面板数据,一定要进行固定效应、时间效应之类的推敲么?还是可以直接回归?我看到很多文献,有的说明了使用固定效应模型的原因,有的则直接回归出结果,请问正确的方法是什么?

规范的做法需要进行豪斯曼检验(Hausman test),在固定效应与随机效应之间进行选择。但由于固定效应比较常见,而且固定效应模型总是一致的(随机效应模型则可能不一致),故有些研究者就直接做固定效应的估计。

对于时间效应也最好同时考虑,比如,加入时间虚拟变量或时间趋势项;除非经过检验,发现不存在时间效应。如果不考虑时间效应,则你的结果可能不可信(或许x与 y的相关性只是因为二者都随时间而增长)。

5如何决定应使用二阶段最小二乘法(2SLS)还是广义矩估计(GMM)?

如果模型为恰好识别(即工具变量个数等于内生变量个数),则GMM完全等价于2SLS,故使用2SLS就够了。在过度识别(工具变量多于内生变量)的情况下,GMM的优势在于,它在异方差的情况下比2SLS更有效率。由于数据或多或少存在一点异方差,故在过度识别情况下,一般使用GMM。

6在面板数据中,感兴趣的变量x 不随时间变化,是否只能进行随机效应的估计(若使用固定效应,则不随时间变化的关键变量 x 会被去掉)?

通常还是使用固定效应模型为好(当然,可进行正式的豪斯曼检验,以确定使用固定效应或随机效应模型)。如果使用固定效应,有两种可能的解决方法:

(1)如果使用系统GMM估计动态面板模型,则可以估计不随时间而变的变量x 的系数。

(2)在使用静态的面板固定效应模型时,可引入不随时间而变的变量 x与某个随时间而变的变量 z 之交互项,并以交互项 xz (随时间而变)作为关键解释变量。

7对于面板数据,如何进行格兰杰因果检验?

在对面板数据进行格兰杰因果检验时,由于被解释变量(dependentvariable)的滞后项作为解释变量(explanatory variable)出现在方程右边,故为动态面板模型(dynamic panel),应使用差分GMM或系统GMM进行估计,详见陈强(2015,p.381)。

8从哪里可以下载《计量经济学及Stata应用》与《高级计量经济学及Stata应用》这两本教材的数据集

关于我的本科教材《计量经济学及Stata应用》与研究生教材《高级计量经济学及Stata应用》,其数据集与课件均可从我的个人网站www.econometrics-stata.com 下载。


为您推荐: