全部 高分子 智能汽车 陶瓷 消费电子 弹性体 生物降解 5G材料 光伏 医用材料 锂电 汽车材料 新消费电子 会议列表 展会 半导体 LED 氢能源 艾邦人才网
应用最广的陶瓷基板材料,你知道怎么合成的吗?

氧化铝陶瓷基板作为目前应用最广,用量最大的陶瓷基板,被应用于LED功率照明、半导体致冷器、功率混合电路、高频开关电源,固态继电器、激光等工业电子。其由氧化铝粉体混合粉碎、脱泡、基板成型、冲切、烧结、切割加工等工艺而成。由于化学和物理特性稳定,氧化铝陶瓷基板作为一种精密陶瓷材料广为人知。


图源自网络


要获得高性能的陶瓷基板,必须其原材料——氧化铝粉体质量也需要优异。主要包括氧化铝的粒度分布、杂质和微量元素含量、氧化铝的水份指标、氧化铝的颗粒形貌等参数均有较高的要求。根据具体的应用不同,其参数要求也不尽相同。


扫描二维码即可加入陶瓷基板交流群


Al2O3的同质多晶体可达10多种,其主要晶型有如下4种:α-Al2O3、β-Al2O3、γ-Al2O3和ζ-Al2O3。一般而言,随着Al2O3质量分数的增加,Al2O3陶瓷的机械性能、电性能、热性能和化学性能等都会得到提升。下图为室温下不同质量分数Al2O3陶瓷的性能对比表。



通常情况下,氧化铝是一种白色晶状粉末,当纯度达到99.99%以上的称为高纯氧化铝。具有卓越的硬度、高亮度、隔电性、超级耐磨损性和高耐腐蚀性等优点。高端氧化铝陶瓷基板通常采用99高纯氧化铝瓷。


Al₂O₃-SEM 图源自网络


高纯度Al₂O₃的制备方法多种多样,各厂家的生产方法也是百花齐放。制备方法主要包括水解异丙醇铝法、水解高纯铝法、热解硫酸铝铵法、热解碳酸铝铵法、改良拜耳法沉淀法及焙烧法等。


到现在为止实现了工业化生产的技术仅有热解硫酸铝铵法、热解碳酸铝铵法和异丙醇铝水解法三种;处于试验研究阶段的有凝胶-溶胶法、喷雾热解法、水解低碳烷基铝法、水热法、离子体法等。下面一起来看看用于制备高纯氧化铝粉体的制备方法。


一、水解法


01

水解异丙醇铝法



醇铝水解的方法在国内应用较多。在催化剂存在下,首先将金属铝和有机醇混合反应得到醇铝溶液,然后再经过水解、高温焙烧中间体获得高纯氧化铝产品。


该方法的优点是制备的氧化铝产品纯度高且粒径小,缺点是生产成本高,工艺过程很复杂而且过程控制比较困难,因此经济效益不高。纪洪波等把异丙醇溶液换成异辛醇溶液,大大地降低了生产所需要的成本价格,缩短了反应时间,使反应效率得以迅速提高。此外,要制得高纯氧化铝,非常重要的一点就是需要对异丙醇铝进行深度除杂。

02

水解高纯铝法


首先将金属铝急冷雾化制成活性粉末,水解和雾化运用的是从经过四级反渗透和树脂交换处理的自来水中分离出来电阻率>12MΩ的去离子水,采用自制雾化装置以雾化方式制备活性铝粉,它结合了超音速雾化和离心两种方法;之后高纯铝在去离子水中水解反应一段时间,最终可得到99.999%的氧化铝产品。

二、热解法


01

硫酸铝铵热解法


热解硫酸铝铵的方法是一种很传统的制备方法,国内外的科研者对此均有研究。该工艺的重点是控制合成条件以得到纯净的硫酸铝铵,或者对所得硫酸铝铵进行多次结晶,达到纯化的目的。它的优点是原料便宜容易获得,产生的母液可循环使用,减少了废液处理的负担;缺点是可能会煅烧不充分致使产品的SO₄2-。含量较大,纯度不理想,而且产生的氨气和三氧化硫需要作进一步处理,以免污染环境。


在制备高纯氧化铝时,可以考虑采用分子筛或活性炭来吸附杂质,也可以运用壳聚糖或乙二胺四乙酸作络合剂来络合杂质,但是均不能达到深度去除痕量级杂质的目的。

02

水解高纯铝法


该方法改进了上述的热解硫酸铝铵的技术,具体操作是向溶液中加入适量的NH4HCO3使其与NH4AI(SO₄)₂反应得到氧化铝的前驱体(AACH),再通过在高温(不低于800℃)下焙烧制得高纯Al₂O₃。


该制备方法克服了硫酸铝铵生产工艺污染环境的缺点,但是同时加重了对废液(NH4)SO₄处理的负担,对环境也是一种污染。

三、沉淀法


01

沉淀法


沉淀法是使用非强碱性化合物作为沉淀剂,通过沉淀反应使原料中的有效成分沉淀出来,包括共沉淀法、直接沉淀法和均匀沉淀法。共沉淀法是先将沉淀剂添加到混合后的溶液中,再通过热分解沉淀物得到所需粒子;溶液中的Al3+与沉淀剂直接反应,析出不溶于水的物质叫做直接沉淀法;均匀沉淀法实际上就是对直接沉淀法的改良,使Al3+与沉淀剂反应形成沉淀物。


该方法工艺简单易于工业化,原料来源方便,没有昂贵的试剂,容易得到粒度可控,分散性良好,高纯度超细的氧化铝粉末,具有很好的发展前景。它的缺点是对溶液组成,浓度,反应温度等条件的要求较高和时间。

四、焙烧法


01

焙烧法


焙烧法是通过精确的烧结温度来制备高纯度氧化铝。通常以原油材料来制备氢氧化铝,然后焙烧成高纯度的氧化铝。莱仕莉等人研究了硫酸铵烧结法,提取氧化铝来制备高纯度的氧化铝。具体步骤如下:


铝酸钠→脱Si、脱Fe→水解→氢氧化铝粉→焙烧→酸洗→高纯氧化铝粉


该焙烧法的优点是原料来源方便,可获得质地均匀且纯度可达99.99%的产品,具有良好的发展前景。它的缺点很难控制焙烧温度,较高的温度会增加能源和成本消耗,较低的温度会影响产品的容量,所以该方法通常与其他方法结合使用。

五、改良拜耳法


01

改良拜耳法


传统拜耳法利用氧化铝在苛性碱溶液中溶解度的变化的性质制备氧化铝,氧化钠浓度与温度的变化关系具体过程如下:
铝土矿→碱液浸出→净化→分解→Al(OH)₃→焙烧→工业级Al(OH)₃→多次净化→高纯度Al₂O₃。


国内部分厂家的拜耳工艺已经进行了改进,其过程如下:
NaAlO₂→脱Si→除Fe→水解→高纯度Al(OH)₃→高温煅烧→研磨→高纯度Al₂O₃。拜耳法原料来源广泛,成本较低,新方法比传统方法更简单纯度更高

六、溶胶-凝胶法


01

溶胶—凝胶法


凝胶法基本原理是:将铝盐(高纯硝酸铝或氯化铝等)和高纯氨或铵盐溶液经处理后,即得溶胶-凝胶氧化铝,然后通过无水乙醇洗涤,陈化,干燥,焙烧得到超细氧化铝粉末。这种方法优点是不易引入杂质因为没有经过机械混合,高纯度,颗粒分散性好。


缺点是原料成本高,有机溶剂有毒污染环境。为了使产品质地相对较软,少些硬团聚产生,可以寻找相应的表面活性剂加入到溶液中。

七、火花放电法


01

法火花放点法


虽然常温常压下金属铝在水中会发生反应,但是由于铝表面有一层致密的氧化铝薄膜,会阻止内部的铝与水进一步反应。火花放电法利用火花放电产生的高温可使铝转化为活性铝与水反应,同时可破坏氧化铝薄膜,暴露出的细小铝粒不断与水反应生成AI(OH)₃,再经过煅烧得到Al₂O₃。该方法绿色环保,但是制备过程中能耗较大,不能忽视重大安全隐患,所以不适宜规模化的生产。


目前高纯氧化铝粉体市场被住友化学、SOSAL、法国Baikowski、日本大明化学等企业垄断,其中住友化学是市场份额最大的企业,占据全球高端市场60%份额。

图源自网络

国内生产高纯超细氧化铝粉体的企业很多,但真正能批量生产并有一定市场份额的屈指可数。近年来虽然国产高纯氧化铝粉体在纯度以及微量杂质元素上实现了突破但是还存在以下几个问题:

1、不同批次粉体之间的稳定性相对较差;

2、粉体的粒度分布及团聚情况研究及认识深度不高;

以上两大主要问题导致国产高纯氧化铝粉体制备依然存在一些问题,无法与进口高纯氧化铝粉体相提并论。产品附加值低,难以进入国际高端市场。要获得高纯高质量氧化铝粉体,国产化还需要很长的路走。

扫描二维码即可加入陶瓷基板交流群

为了进一步加强交流,艾邦建有陶瓷基板交流群,诚邀DBC、DPC、AMB、LAM、LTCC、HTCC陶瓷基板,氧化铝、氮化铝、氮化硅、碳化硅粉体陶瓷基片生产企业、设备、材料、辅助耗材,以及下游应用LED、VCSEL、IGBT、汽车、半导体、射频封装等需求企业参与。目前群友包括:三环集团、佳利电子、中电13所、45所、55所、中瓷电子、福建华清、富乐德、艾森达、莱鼎、郑州中瓷、浙江新纳、博敏电子、珠海粤科京华、富力天晟斯利通、金瑞欣、沃晟微等加入。


活动推荐:

第二届高端电子陶瓷MLCC、LTCC产业高峰论坛

2021年7月9日(周五)

深圳 观澜 格兰云天酒店


时间

议题

演讲单位

09:00-09:25

开场介绍

艾邦智造 江耀贵 创始人

09:25-09:50

浅谈MLCC未来发展趋势

宇阳科技 陈永学 战略总监

9:50-10:15

MLCC高端关键生产装备国产化解决方案

宏华电子 梁国衡 副总工程师

10:15-10:40

茶歇

10:40-11:05

应用于电子陶瓷领域的毕克产品介绍

毕克化学 王玉立 博士

11:05-11:30

浅谈我国无源元器件的机遇与挑战

风华高科 黄昆 LTCC事业部经理/技术总监

11:30-11:55

微波毫米波无源集成关键材料与技术

南方科技大学工学院党委书记/副院长 汪宏 教授

11:55-14:00

午餐

14:00-14:25

封接玻璃作用机理及在电子元器件应用研究进展

华东理工大学 曾惠丹 教授/博导

14:25-14:50

LTCC高频低介电常数陶瓷生料带

上海晶材新材料 汪九山 总经理

14:50-15:15

稀土在先进电子陶瓷电容材料中的研究进展

晶世新材料 程佳吉 教授

15:15-15:40

高性能电容器材料的应用研究

上海硅酸盐研究所 陈学锋 研究员/博士

15:40-16:05

茶歇

16:05-16:30

MLCC产品失效分析和检测手段

深圳纳科科技 段建林 总经理

16:30-16:55

物理气相法制备MLCC内\外电极金属粉体

江苏博迁新材料 江益龙 总经理

16:55-17:20

如何提升LTCC激光开孔效果对后段工艺良率影响

东莞盛雄激光 王耀波  高级项目总监

17:20-17:45

MLCC在5G基站的应用及可靠性评估方法

中兴 杨航 材料技术质量高级工程师

17:45-20:00

晚宴



报名方式:

方式1:在线登记报名

报名链接:复制到浏览器报名或者扫描下方二维码即可报名

https://www.aibang360.com/m/100080?ref=109108


 


方式2:请加微信并发名片报名

艾果果: 133 1291 7301; 

邮箱:ruanjiaqi@aibang360.com



收费标准:

参会人数

1~2个人

3个人及以上

7月7日前付款

2500元/人

2400元/人

现场付款

2800元/人

2500元/人

费用包括会议门票、全套会议资料、午餐、茶歇等,但不包括住宿。


汇款方式及账户:(均可开增值税普通发票)


公对公账户:

名称:深圳市艾邦智造资讯有限公司

开户行:中国建设银行股份有限公司深圳八卦岭支行

账号:4425 0100 0021 0000 0867


扫码支付:

注意:会议费用还支持微信(绑信用卡)支付,请扫描上面二维码完成截图发给工作人员;


注意:每位参会者均需要提供信息;


点击阅读原文了解详情


相关推荐
火爆!第四届电子陶瓷展览会已火热开启!9月9-11日,深圳宝安新馆8号馆
9月9日,第四届电子陶瓷产业链展正式开展!开展第一天,人气就持续攀升,据初步不完全统计,第一天专业观众流量达7000+人次!现场不仅汇聚电子陶瓷产业链优质资源,还有众多行业巨头齐齐到场参观,交流产品发展新的!
0
0
153
第四届电子陶瓷展览会圆满落幕!我们2022年再会!
第四届电子陶瓷展览(9月9日-11日)会于周六(9月11日)圆满结束,展会吸引了大批专业观展到场,观展总人数达13910人。
0
0
120
观展交通指南 l 第四届电子陶瓷展览会(9月9~11日)
观展交通指南 l 第四届电子陶瓷展览会(9月9~11日)
0
0
135
2021年7月9日深圳第二届高端电子陶瓷产业高峰论坛精彩回顾
2021年7月9日深圳第二届高端电子陶瓷产业高峰论坛精彩回顾
0
0
321
挑战陶瓷基板高可靠性,贺利氏焊料脱颖而出
挑战陶瓷基板高可靠性,贺利氏焊料脱颖而出
0
0
5
贺利氏推出全新AMB陶瓷基板产品
据贺利氏电子官方消息,贺利氏于近期推出了全新产品:Condura®.ultra 无银活性金属钎焊(AMB)氮化硅基板。
0
0
5
一文读懂氮化铝粉体的制备方法
一文读懂氮化铝粉体的制备方法
0
0
3
陶瓷基板在半导体制冷器中的应用
半导体制冷技术的研究起源于上世纪50年代,是一门以热电制冷材料为基础的新兴制冷技术,作为半导体制冷技术的核心部件,半导体热电制冷器件能让高集成度电子元器件的工作温度迅速下降,因而应用十分广泛。陶瓷基板在半导体制冷器件中起到了关键的作用,下面我们就从什么是半导体制冷器开始说起,为大家介绍陶瓷基板在其中的应用。
0
0
7
AMB陶瓷基板厂商:国外篇
AMB陶瓷基板厂商:国外篇
0
0
11
国内AMB陶瓷基板厂商15强
与传统产品相比,AMB陶瓷基板是靠陶瓷与活性金属焊膏在高温下进行化学反应来实现结合,因此其结合强度更高,可靠性更好,极适用于连接器或对电流承载大、散热要求高的场景。
0
0
8
陶瓷基板金属化有了新技术:DSC!
陶瓷基板金属化有了新技术:DSC!
0
0
9
氮化镓陶瓷薄膜电路的激光直写
氮化镓陶瓷薄膜电路的激光直写
0
0
17
乐普科基于Rogers板材射频微波电路的激光制作解决方案
乐普科基于Rogers板材射频微波电路的激光制作解决方案
0
0
18
LED封装陶瓷金属化有什么应用优点?
LED封装陶瓷金属化基板作为LED重要构件,随着LED芯片技术的发展而发生变化,目前LED散热基板主要使用金属和陶瓷基板。一般金属基板以铝或铜为材料,由于技术的成熟,且具有成本优势,也是目前为一般LED产品所采用。
0
0
23
全球氮化铝陶瓷基板厂家大全
氮化铝陶瓷基板作为一种新型陶瓷基板,具有导热效率高、力学性能好、耐腐蚀、电性能优、可焊接等特点,是理想的大规模集成电路散热基板和封装材料。
0
0
36
陶瓷浆料流延工艺用哪种分散剂合适?
流延成型法是制备大面积、超薄陶瓷基片的重要方法,被广泛应用在电子工业、能源工业等领域,在制备Al2O3、AlN电路基板,BaTiO3基多层陶瓷电容器(MLCC)及ZrO2固体燃料电池等。流延成型技术为电子元件的微型化以及超大规模集成电路的实现提供了广阔的前景。
0
0
23
中日高科技陶瓷产业园项目预计12月试生产,落户AT陶瓷平板膜和陶瓷基板项目
春日天正晴,施工忙不停。近日,记者来到位于杭瑞高速以北、206国道以东的中日高科技陶瓷产业园,一个个铆足干劲的忙碌身影,一处处机械轰鸣的施工现场,共同勾勒出一幅如火如荼的建设画卷。
0
0
28
厚度0.38mm,DPC陶瓷基板通孔怎么填饱满?
本文介绍了将直接镀铜工艺(DPC)和填通孔技术相结合制备大功率LED(发光二极管)陶瓷基板的工艺流程,重点介绍了采用直流电镀一步法、脉冲电镀一步法和脉冲电镀两步法填通孔的常用配方和填充效果。
0
0
32
高导热陶瓷基板难实现?试试纤维状的氮化铝单结晶
Thermalnite®是一种纤维状的氮化铝单结晶,作为能够同时实现高热导率和高防水性的填料, 在陶瓷/树脂复合材料的应用领域被寄予厚望。Thermalnite已经实现了高品质大规模量产,且这项技术目前在世界上是唯一的。
0
0
32