全部 高分子 智能汽车 陶瓷 消费电子 弹性体 生物降解 5G材料 光伏 医用材料 锂电 汽车材料 新消费电子 会议列表 展会 半导体
连续纤维增强热塑性复合材料预浸料的制备工艺

连续纤维增强热塑性复合材料(Continuous Fiber Reinforced Thermoplastic composites,简称CFRT)是指以热塑性树脂为基体,连续性纤维为增强材料,经过树脂熔融浸渍、挤压等工形成的轻质、高强度、高刚性、高韧性、可回收的新型热塑性复合材料。


图片

由CFRTP制成的薄膜和片材可以以多变的方式组合,从而为设计师提供了更多设计自由度  图片:Covestro AG



连续纤维增强热塑性复合材料性能优异,在交通运输,航空航天和国防,工业和体育用品方面具有广阔的应用前景。根据Lucintel 预计,从2018年到2023年,全球CFT市场预计将以8.0%的复合年增长率增长。
           图片CFRT的应用领域 图片来自GPM




热塑性复合材料制件的生产,一般情况下需要经过两个过程:

(1)片材(预浸渍)的制备;
(2)制件的成型。

预浸料是用树脂基体在严格控制的条件下浸渍连续纤维或织物,制成树脂基体与增强体的组合物,是制造复合材料的中间材料。预浸料的某些性质直接带入复合材料中,是复合材料的基础。复合材料的性能在很大程度上取决于预浸料的性能。


图片

连续纤维增强热塑性复合材料单向预浸带


与热固性树脂基复合材料相比,连续纤维增强热塑性复合材料的浸渍更复杂,由于热塑性树脂的熔体黏度大,一般都超过100Pa·s,熔体流动困难,使得增强纤维很难获得良好浸渍,因此解决热塑树脂对连续增强纤维的浸渍问题成为制备CFRTP片材的关键技术。


连续纤维增强热塑性复合材料的浸渍方式主要有溶液浸渍法、熔体浸渍法、粉末浸渍法、浆状树脂沉积法、混编法、薄膜叠层法及反应浸渍等。


01 溶液浸渍法

 

溶液浸渍是将树脂溶于合适的溶剂,使其黏度下降到一定水平,然后采用热固性树脂浸渍时所使用的工艺来浸润纤维,最后通过加热除去溶剂。


溶液浸渍法的优点:
  • 克服了热塑性树脂溶体粘度高的缺点,是纤维得到良好浸渍;
  • 制备工艺简便,设备简单。


溶液浸渍法的不足:
  • 溶剂必须完全去除,不然将会导致制品耐溶剂性下降;
  • 去除溶剂的过程中存在物理分层,沿树脂纤维界面渗透以及溶剂可能聚集在纤维表面的小孔和空隙内,造成树脂与纤维界面不好,耐溶剂性受影响;
  • 溶剂蒸发和回收费用昂贵且污染环境。


尽管如此,目前一些采用其他制备技术不易浸渍的高性能树脂复合材料的制备大多仍采用溶液浸渍法。

02 熔体浸渍法


 

熔体浸渍是将热塑性树脂加热熔融后来浸渍纤维的一种制备技术。可以通过两种方法实现:

一种是熔体挤出浸渍,即利用挤压器将熔体喂入到纤维经过的模具中。影响熔体挤出浸渍工艺的因素主要是熔体聚合物穿透纤维层的速度,这取决于增强材料的结构。
           图片

另一种是熔体拉挤浸渍,采用一种特殊结构的拉挤模头,让均匀分散、预加张力的连续纤维束通过一连串轮系间流动着熔融态的基体树脂的滚轮系统,反复多次承受交替的变化使纤维和熔体强制性的浸渍,达到理想的浸渍效果。但是这种方法只能用于生产长纤维增强颗粒(长度一般为6~10mm)而非片材。


以上两种方法,施加在纤维上的压力很大,会导致纤维损伤。而熔体浸渍法的主要优点是不需要任何溶剂。

03 粉末浸渍法


 

粉末浸渍法是在硫化床中,通过静电作用将树脂细粉吸附在纤维单丝的表面,然后加热使粉末熔结,最后在成型过程中使纤维得以浸润。由于在干态下进行浸渍,因此加工过程不受基体黏性的限制,高相对分子质量的聚合体可分布到纤维中。


能够吸附在纤维上的聚合物颗粒直径在5~25μm范围内,树脂粉末直径以5~10μm为宜。


粉末浸渍法的优点:
  • 纤维损伤少,聚合物无降解;
  • 加工速度快,成本低。


粉末浸渍法的不足:
  • 浸润尽在成型加工过程中才能完成,粉末易散失;
  • 浸润所需的时间、温度、压力依赖于粉末粒径的大小及分布。


04 浆状树脂沉积法


 

浆状树脂沉积法是法国造纸公司Arjomari和英国Wiggins Teape公司开发的,其工艺与造纸工艺相似。Arjomari公司将短切长度在6—25mm的玻璃纤维、树脂粉末和乳化剂一起分散在水中,成为水悬浮液,然后加入絮凝剂,使其凝聚在液压成型机的滤网上,使凝聚物与水分离,热压成毡状凝聚物,熔化成片。


浆状树脂沉积法的优点,纤维分散性好、破损小,受热少,生产效率高;缺点是技术难度大、设备成本高。


05 混编法


 

混编法是将纺成纤维或薄膜带的热塑性树脂与增强纤维按一定比例紧密地合并制成混合砂,再通过一个高温密封浸渍区,将树脂纤维熔成基体。


用一般的织造工艺就可以很容易地将混合纤维制成织物,混合约均匀,固化时所需的压力越小,混合的理想状态是每一根增强纤维都与基体纤维相邻,但是由于增强纤维与基体纤维的物理性能差异较大,实际上这是很难以实现的。


混编法具有良好的加工性能,树脂含量易于控制,纤维能得到充分的浸润,混合纱可以织成各种复杂形状,包括三维结构,也可以直接缠绕,制得性能优良的复合材料。


但是该技术不适用于玻纤材料的复合以及日用品或低温热塑性工程材料的成型。


06 薄膜叠层法


 

薄膜层叠法是纤维增强材料层和热塑性材料片叠加,加热加压使聚合物流入增强材料之间,然后固化。


薄膜层叠法施加的压力要足够大,使熔体既能进入纤维层之间,又不至于在增强层之间出现流动,典型压力值小于2MPa。冷却之后的复合物应该没有孔洞,真空辅助施压可以保证片材无孔。这种方法广泛应用于成型表面形状复杂的片材。


薄膜层叠法的优点:
  • 可以制得高质量的层压制品,但由于溶体高粘性,需要较高压力


薄膜层叠法的不足:
  • 树脂含量高,成本高;
  • 高粘性基体树脂很难浸润到纤维中。


07 反应浸渍法


 

反应浸渍法是利用单体或预聚体初始分子量小, 熔体黏度低、 流动性好可充分浸润纤维的特点,通过原位聚合制备连续纤维增强热塑性树脂基复合材料。


但这种工艺条件比较苛刻、反应不易控制,尚未实现工业化。


注:本文部分内容摘取自《连续纤维增强热塑性复合材料的制备与成型》,作者杨铨铨,梁基照,艾邦高分子编辑整理


艾邦建有热塑性复合材料微信群,欢迎Sabic、东丽、朗盛、巴斯夫、科思创、俊尔、广州金发、振石集团、常州汉耀韩华、上海杰事杰华航复材、集威新材料、江苏科悦、青岛中集创赢、深圳市科聚新材料、浙江华正新材料、浙江胜钢新材料、浙江遂金复合材料等热塑性复合材料企业,主机厂,零配件厂商,玻纤供应商,助剂,设备等企业加入我们微信群。



图片


相关推荐
置顶
艾邦2021年下半年会议和展会计划
艾邦2021年下半年会议和展会计划
0
0
1139
劳士领纤维增强复合材料打造汽车轻量化结构设计
在轻量化结构设计中,塑料是定制化材料改性的基础。它让许多应用成为可能。较低的重量和可集成性为降低成本提供了空间。
0
0
10
朗盛基于聚酰胺6的轻质复合材料,用于豪华轿车的负载舱
朗盛的这些复合材料的一项新应用是制造安装在梅赛德斯-奔驰S级轿车上的负载舱,用于容纳 48V 车载电源电池。
0
0
6
朗盛推出全生物连续纤维增强复合材料,采用亚麻纤维增强PLA
朗盛Tepex 连续纤维增强热塑性复合材料产品线的最新成员将天然亚麻纤维制成的织物与 PLA 作为基质材料相结合。
0
0
5
三菱化学开发出具有阻燃功能的热塑性复合材料
它既具有阻燃功能,又具有高生产率和可回收性。
0
0
19
航空航天及汽车等需求不断增长,索尔维扩大其美国热塑性复合材料产能
新产品线将能够使用一系列高性能聚合物(包括 PVDF、PPS 和 PEEK)制造单向复合胶带。
0
0
23
南京聚隆:已获得比亚迪等供应商认证并供货
南京聚隆积极布局和发展壮大新能源汽车材料业务,已获得比亚迪、吉利、蔚来、理想、小鹏、恒大等新能源汽车厂商等国内外知名新势力新能源汽车厂商的供应商认证并供货
0
0
846
威格斯新型PAEK共聚物及其复合材料和增材制造应用
威格斯PAEK共聚物的主要目的,不仅降低加工温度,并大幅延缓结晶速度,适用于复合材料及增材制造领域
0
0
40
先锋新材拟募资5.11亿元用于年产2,300万㎡连续纤维增强热塑性复合材料项目
先锋新材拟向特定对象发行股票,募资建设年产连续玻璃纤维增强聚丙烯热塑性复合材料1300万㎡及连续涤纶纤维增强聚丙烯热塑性复合材料1000万㎡的生产能力。
0
0
36
帝斯曼无卤高温尼龙(PPA)材料降低车辆发生电子故障的风险
帝斯曼可以帮助客户确定最适合制造塑料汽车电子元件的材料,还帮助他们确定关键应用要求,并提供相应文件来证明热塑性塑料的安全性能。
0
0
46
【技术干货】一文详细盘点10类常见碳纤维产品的典型特征及主要用途
碳纤维具有高强度、高模量、耐腐蚀、热膨胀系数小等一系列优异的性能,因此其应用领域非常广泛。而为了满足客户需求,碳纤维生产厂商开发出了多种不同用途的纤维,来充分利用碳纤维优异特性。本文将全面分析碳纤维产品的10种常见的应用方式及用途。
0
0
89
电动化:巴斯夫的材料解决方案
为应对新能源汽车“三电”系统面临的一系列挑战,巴斯夫推出了诸多创新解决方案。
0
0
34
5G时代,复合材料的发展机遇
玻璃纤维布和特殊树脂是PCB重要的原材料之一,玻璃纤维布作为增强材料,起着绝缘和增加强度的作用;特殊树脂作为填充材料,起着粘合和提升板材性能的作用。
0
0
49
埃万特推出增强外观美感的防潮尼龙 6 和 6,6 长纤维复合材料
Avient 新的 Complēt 防潮尼龙系列具有长纤维增强功能,具有增强的表面美感,几乎不含可见纤维,有助于提高消费者对模塑制品的质量感知。
0
0
45
玄武岩纤维长纤增强LFT复合材料的性能及应用介绍
长纤维增强热塑性复合材料(LFT)中的玄武岩纤维长纤增强(LFT-B)复合材料及其应用。
0
0
36
复合材料在高铁中的应用
复合材料在列车上的应用,按承力特征大致可分为两类:复合材料非主承力件和复合材料主承力件。其中复合材料非主承力件又可分为主承力件(如车身、地板和座椅等非主承力件)和辅助件(洗漱间、厕所和水箱等辅助构件),而复合材料主承力件主要是指列车车体、司机室和转向架构架等列车的大型承力构件,它是复合材料取代传统材料,实现车辆轻量化的关键。
0
0
48
国产高性能热塑性复合材料的产业化之路
热塑性复合材料从上世纪70年代初被开发以来,一直都受到各国重视,相关的研究及应用层出不穷。航天航空、汽车、化工、电子电器等领域均是热塑性复合材料应用和发展速度较快的领域。特别是近10年来,每年的消费量均超25% 的速度增长,发展速度比热固性复合材料高数倍。
0
0
40
五菱神车之“翼”,热塑性复合材料飞入寻常百姓家(附名单)
热塑性复合材料增强蜂窝板(玻纤增强聚丙烯蜂窝复合板)是由上下两表面为聚丙烯流延膜,中间两层为玻璃纤维聚丙烯纤维复合纱织物,芯材为聚丙烯原料制成的蜂窝状结构材料,通过加热复合纱织物后直接热熔复合而成。
0
0
43
LFT长纤增强复合材料在5G通信浪潮下的应用
LFT改性塑料是5G技术实现的基础原材料之一。较高的尺寸稳定性、优异的耐疲劳性和力学性能、高耐冲击等等性能是最大的优势。
0
0
48