全部 高分子 智能汽车 陶瓷 消费电子 弹性体 生物降解 5G材料 光伏 医用材料 锂电 汽车材料 新消费电子 会议列表 展会 半导体
5G时代来临,复合材料将有什么机会?

一、关于5G


最近几年通讯发展很快,我们短短几年见证了2G、3G、4G的跨越式发展。宽带中国、光纤到户,见证了铜缆到光纤。而从有线到无线,万物互联,大数据,虚拟现实,智能城市,需要更新一代的技术提供支撑。


2017年5月,全国首批5G试验网城市确定,分别是:上海市、广州市、苏州市、宁波市。据悉,接下来,中国移动将在上述4个城市开展5G试验网建设、进行5G外场测试。这也意味着,5G正从纸张中走向现实。


图片


5G具有速度快,容量大,因此人们都很期待。


图片


通讯技术分为两种途径:有线和无线。有线从铜缆到光纤,速度和容量提升很大。而5G就是着力解决空中传播,也就是无线部分。中学我们就知道,信号在空中传播通过电磁波。小时候用的收音机,从调幅到调频,频率上又分长波和短波。


图片

图片


无线电波是我们通讯的主要波段,从长波到短波,从低频到高频,更高.....手机.中频~超高频进行通信,目前主流的4G LTE,属于超高频和特高频,我们国家主要使用超高频。


图片


随着1G、2G、3G、4G的发展,使用的频率是越来越高的,为什么呢?因为频率越高,速度越快。因为频率越高,频段越宽。


图片


频段就相当于路的宽度,越宽容纳的车子越多,路就越通畅,跑的越快。2017年底,工信部下发通知:




根据著名的波速等于频率乘以波长的公式:


图片


那么:


图片


也就是说5G使用的是毫米波!毫米波比以前4G及以前用的波长长。当年学物理时,我还是蛮认真的,学波动力学,我们知道波有反射、折射、散射,重要的是衍射,波可以绕过物体传播。但波长越短,绕过物体的能力越差。


毫米波最大的缺点就是穿透力差、衰减大。也就是说,如果5G用高频段,那么它最大的问题,就是覆盖能力会大幅减弱。可以预见的是,未来 5G 移动通信将不再依赖大型基站的布建架构,因为大的基站将会有很多死角。这样大量的小型基站将成为新的趋势,它可以覆盖大基站无法触及的末梢通信。覆盖同一个区域,需要的基站数量将大大超过4G。


根据天线特性,天线长度应与波长成正比,大约在1/10~1/4之间。而5G使用毫米波也就意味着天线可以做到毫米级。毫米级的天线多小啊,也就是说一个基站可以装多个发射天线,而一部手机也可以装多个接受天线。这就是MIMO(Multiple-Input Multiple-Output),意思是多输入多输出。


天线也势必会带来更多的干扰,如果能有效地控制这些天线,让它发出的每个电磁波的空间互相抵消或者增强,就可以形成一个很窄的波束,而不是全向发射,有限的能量都集中在特定方向上进行传输,不仅传输距离更远了,而且还避免了信号的干扰,这种将无线信号(电磁波)按特定方向传播的技术叫做波束成形 (beamforming)。这一技术的优势不仅如此,它可以提升频谱利用率,通过这一技术我们可以同时从多个天线发送更多信息;在大规模天线基站,我们甚至可以通过信号处理算法来计算出信号的传输的最佳路径,并且最终移动终端的位置。因此,波束成形可以解决毫米波信号被障碍物阻挡以及远距离衰减的问题。


除此之外, 5G 的还有一大特色--全双工技术。全双工技术是指设备的发射机和接收机占用相同的频率资源同时进行工作,使得通信两端在上、下行可以在相同时间使用相同的频率,突破了现有的频分双工(FDD)和时分双工(TDD)模式,这是通信节点实现双向通信的关键之一,也是 5G 所需的高吞吐量和低延迟的关键技术。


5G具有毫米波、小基站、Massive MIMO、波束成形以及全双工这五大技术上,这使5G 具备高性能、低延迟与高容量特性。


二、复合材料可能存在的应用


前面絮絮叨叨介绍了那么多5G知识,当然好多是抄别人的,不过我又重新演绎了一下,这样理解起来比较方便(最后一个全双工没搞明白)。不过我的目的不是科普5G,而是为了说明5G时代,复合材料有什么机会。因为新的技术,需要有新的硬件设施来支撑。


1、基站外壳


传统的基站都是又笨又大的铁塔,当然随着人们观念的改变,最近出现许多傻兮兮,奇怪的大树。


图片


但5G的特点,基站的小型化,就可以实现美观化、多样化。


图片


相对于传统的高大的铁塔式基站,这些小型的基站可以利用复合材料制造。这种小型基站的外壳,类似于电器柜,而放置于室外,面临风吹雨打,光照低温等耐候性要求。这些要求,SMC、BMC的模压,甚至LFT的注塑,都可以得到。关键是哪一种材料和工艺可以在满足要求的情况下可以低成本、快速的实现。


2、天线罩


MIMO(Multiple-Input Multiple-Output),意思是多输入多输出。意味着一个基站内可以装多个天线,而这些天线的尺寸又很小,需要天线罩。天线罩具有良好的电磁波穿透特性,机械性能上能经受外部恶劣环境的作用。室外天线通常置于露天工作,直接受到自然界中暴风雨、冰雪、沙尘以及太阳辐射等侵袭,致使天线精度降低、寿命缩短和工作可靠性差。复合材料天线外罩能起到绝缘防腐、防雷、抗干扰、经久耐用等作用,而且透波效果非常好。


透波复合材料是由增强纤维和树脂基体构成的,两者的电性能好才能成型出电性能好的透波材料。通常增强材料的力学性能和介电特性均优于树脂基体,所以复合材料的透波性能主要取决于树脂基体的性能。因此必须选择具有优良电性能的树脂基体,同时树脂在复合材料中也起胶粘剂的作用,是决定复合材料耐热性的基本成分。


树脂基体主要有传统的不饱和聚酯树脂(UP)、环氧树脂(EP)、改性酚醛树脂(PF)以及近年来开始研究和应用的氰酸酯树脂(CE)、有机硅树脂、双马来酰亚胺树脂(BMI)、聚酰亚胺(P1)、聚四氟乙烯(PTFE)等新型的耐高温树脂。


增强体目前大多都采用玻璃纤维,而国内透波复合材料使用的增强材料主要是 E 玻璃纤维和 S 玻璃纤维,M 玻璃纤维使用量较少。Kevlar(芳纶)最初由美国杜邦公司发明,Spectra1000 在各种频率下均表现出优异的介电性能,且具有的低密度、高强度、高模量和高抗冲击性能,使其在高性能天线罩的制造中具有极大的吸引力。


3、GFRP/KFRP在光缆中的应用


5G分有线和无线,有线部分离不开光纤光缆。


GFRP是玻纤复合材料,KFRP是芳纶复合材料,两种材料都是通过典型的复合材料工艺——拉挤工作制成连续的圆柱状复合材料,基体树脂多采用热固性树脂如不饱和树脂、环氧树脂等,有报道研究有热塑性材料做基体树脂但应用不多。


图片


GFRP/KFRP在光缆中经常作为加强芯使用。加强芯经历了钢丝加强芯、GFRP、KFRP三个阶段。


GFRP/KFRP加强芯具有以下的优点:

1、非金属材料 对电击不敏感,适用于多雷电、多雨等气候环境地区; 

2、使用FRP加强芯的光缆可紧挨着电源线和电源装置安装,不会受电源线或电源装置产生的感应电流干扰; 

3、与金属芯相比,GFRP/KFRP不会产生因金属与油膏化学反应产生的气体而影响光纤传输指标; 

4、与金属芯想比,FRP具有拉伸强度高、重量轻的特点; 5、FRP加强芯光缆防弹、防齿咬、防蚁。

       

而GFRP/KFRP两者比较:

1、GFRP价格便宜,应用性广。

2、KFRP柔韧性好,具有超小的弯曲半径。特别适合在墙角、踢脚线处安装。

3、KFRP密度更轻,比强度和比模量更高。

4、KFRP在安装使用时折断的话,因为芳纶的柔韧性,不会刺破护套和光纤。

5、光纤、光缆及其他线缆桥架和沟槽


图片


线缆桥架是用于线缆布线的辅助设备,由槽式、托盘式或梯级式的直线段、弯通、三通、四通组件以及托臂(臂式支架)、吊架等构成具有密接支撑线缆的刚性结构。


5、支架系统


图片


支架是电线电缆在铺设时用于托、撑电缆或桥架的固定装置。


6.通讯塔


图片


高高耸立的通讯塔大都是钢结构,但腐蚀是个大问题,而复合材料可以解决这个问题。而且复合材料比较轻,使用无扣件连接技术,塔结构的各个独立部件可以快速组装,在装配过程中不需要金属螺栓,按照方便,还减轻了整个塔体的重量。


本文来源:严兵 严说一点


材料产业也迎来了5G新时代,在应用端手机、基站、物联网、汽车等硬件载体都将对5G新材料有更多的需求和更高的要求。欢迎长按下方二维码加入艾邦5G材料交流群进行交流,共谋发展进步!


图片


相关推荐
东丽开发用于 5G 通信的新型透明PPS耐热薄膜
这款薄膜的潜在应用包括透明 5G 天线、透明柔性印刷电路板、透明加热器基板材料和其他电子元件。
0
0
64
蓝星工程塑料应用于5G基站天线振子
蓝星优质的工程塑料产品,已通过某行业标杆客户的测试,顺利运用在5G基站天线振子内部结构部件。
0
0
49
5G新材料,3M 10大黑科技
9月9-11日,第四届5G加工产业链展览会8号馆,3M:8C57,欢迎莅临。
0
0
109
三井化学开发适用于毫米波基板的低介电COC树脂
新开发的高机能树脂 Gigafreq™ 具有优异的耐热性能、低介电性能、低吸湿性以及透明性。
0
0
84
5G通讯PCB电子树脂生产商圣泉集团(605589)成功上市
济南圣泉集团股份有限公司今日正式登陆上交所主板,股票代码:605589。
0
0
81
北京化工研究院开发5G通信高频覆铜板用液体橡胶
与4G覆铜板用液体橡胶相比,5G通信高频覆铜板用液体橡胶性能要求更高,其中低介电常数和低介电损耗是决定该材料能否顺利进入5G应用领域的关键。
0
0
77
ENEOS开发出低介电损耗LCP树脂
ENEOS现已成功开发出介电损耗正切为 0.0007 (@10GHz) 的低介电 LCP 树脂,与以往ENEOS的传统产品相比,介电损耗正切减少了 65%。
0
0
96
埃万特新增低介电热塑性塑料扩展 5G 射频材料组合
PREPERM™ 热塑性塑料提供稳定且可控的介电性能以及高达毫米波 (mmWave) 频率的超低传输损耗,以支持 5G 网络和应用
0
0
82
瞄准高速通信和汽车市场,住友化学计划扩大LCP产能
日本住友化学计划增强超级工程塑料液晶聚合物(LCP)业务。目前,住友化学产能在1万吨左右,在此基础上,住友化学计划增加几千吨的产能规模,至少将产能提高2~3成。该投资将在日本国内生产基地进行,预计将于2023年左右开始运营。
0
0
178
同益股份(300538)拟13亿元投资新建年产 10 万吨级电子信息新材料华南研发、制造基地
深圳市同益实业股份有限公司与江西信丰高新技术产业园区管理委员会于2021年7月23日签署《关于新建年产10万吨级电子信息新材料华南研发、制造基地投资合同书》,拟在江西信丰投资建设新材料项目,项目计划总投资金额13亿元,其中固定资产投资10亿元,建设期5年,项目于2026年达产。
0
0
214
收藏!一张表看懂5G领域工程塑料种类及应用!
工程塑料主要应用在5G的三大应用场景:增强型移动宽带(天线、基站、智能终端);物联网通讯(智能穿戴,物流);高可靠低延时通讯(车联网)。
0
0
145
有机硅材料在5G通讯中的应用及相关布局
有机硅材料具有优异的耐高低温、电气绝缘、耐臭氧、耐辐射、耐潮湿、耐震动、耐压缩、良好的导热性,无毒无腐和生理惰性等特点,在通讯领域应用广泛。
0
0
84
5G智能终端对材料散热需求与挑战
5G对于散热的要求更高,同时它对于介电特性Dk、Df新的要求也加进来,在这些所有的特性要求下,5G材料的选择就会变得更为复杂,甚至可以说不会是单一的材料,它的方案可能会是一个整合的方案。
0
0
104
加速5G进程:普立万发布通讯设备新配方
应用于5G行业的全新Edgetek™配方可定制特定介电常数(Dk)及降低损耗因数(Df),有助于5G基站天线制造商提升设计灵活性并加快产品上市速度。
0
0
81
5G高频对材料的需求
5G高频对材料的需求:高介电低损耗材料满足小型化设计、低介电低损耗减少传输损耗、介电稳定。
0
0
112
JSR开发和销售用于5G高速传输的绝缘材料
JSR使用自己的独特的合成技术开发出用于高频印刷电路板的绝缘材料,具有低介电常数和低介电损耗正切。
0
0
81
适用于5G之低介电环氧树脂单体并且可提高影像辉度之银幕用透明薄膜
日本JXTG Energy公司接连开发了2项高机能塑胶相关制品,并加速投入市场的脚步。制品包括了具有低介电特性、低黏度的环氧树脂单体(Monomer),将可做为反应型环氧稀释剂,扩大采用于对应5G之硬式印刷基板。
0
0
84
科思创携手德国电信等联合开发应用于5G基站、天线等创新型材料解决方案
科思创与德国电信和瑞典于默奥设计学院联合开发应用于基站、天线和其他系统组件的创新型材料解决方案。
0
0
80
5G时代,高介电低损耗材料未来可期
5G时代,电子器件向着小型化、多功能化、轻量化发展,因此具有高介电常数、低介电损耗的材料成为行业关注的热点。
0
0
93
低介电TPX材料在5G领域的应用
TPX分子中无极性基,因此具有优异的电气绝缘性,介电常数低,介电损耗也很低,因此TPX非常适合高频率领域的应用,这就意味着在将来的5G高频时代,它有着很好的应用潜力。
0
0
77