全部 高分子 智能汽车 陶瓷 消费电子 弹性体 生物降解 5G材料 光伏 医用材料 锂电 汽车材料 新消费电子 会议列表 展会 半导体 LED 氢能源 艾邦人才网
​PPS改性热点应用方向

聚苯硫醚PPS的分子结构由苯环与硫原子交互排列,构型整齐,易形成热稳定性较高的结晶结构。同时,其分子结构使 PPS材料具有了高度稳定的化学键特性,苯环结构使PPS具有较大的刚性,而硫醚键(-S-)则提供了一定的柔顺性。

       图片        

独特的分子结构使PPS材料具有很多优于其它工程塑料的性能,例如PPS材料的刚性较高,纯PPS的弯曲模量为3.8GPa,增强改性后可以达到12.6GPa。其耐热性能优异,短期耐热可以达到 260℃,且能在200~240℃下长期使用。PPS的介电常数及介电损耗角正切值均较低,并且在较大的频率和温度范围内变化较小。另外,其还具有吸水率较低,阻燃性较好,耐化学腐蚀性较好等特性。


PPS材料在力学性能、耐热、阻燃及电学性能等方面综合优势突出,改性PPS材料在电子、精密仪器、汽车、国防、石油化工等领域均有广泛应用,特别是在近几年热门的新能源及5G通讯领域,更利于发挥PPS材料的优势。


在汽车领域,经过增强改性后的PPS材料具有轻质高强的特性,能够替代金属材料,在减轻汽车零部件重量的同时,还能降低采购成本。另外,由于其绝缘耐高温的特性,在汽车的电气系统、发动机组件等系统,共计上百种零件中均有应用。近几年,随着新能源汽车的发展,PPS材料在汽车领域的应用得到进一步扩展,尤其是在新能源汽车的动力电池模组中,主要应用于电池支架、绝缘盖板、锂电池隔膜等领域。

                

另外,PPS材料的介电常数较低,且在较大的频率和温度范围内差异较小,而5G通讯为了提高数据传输速度,采用了极高频的毫米波波段,导致其在传播过程中的衰减较大,因此,为了保证信号传输速度,减少信号损失,介电性能优异的PPS材料具有较大应用价值。PPS 材料应用主要包括5G通讯设备,数据通讯等智能终端,以及5G衍生行业,如智慧生态物联网、车联网等领域。

               

  • PPS 材料在新能源及5G通讯领域的研究进展


1 增强增韧改性


PPS虽然具有众多优异的性能,但是其脆性较大,冲击性能较差,因此,PPS材料通常需要经过改性后进行使用。改性方法主要包括热交联改性及与其它组分共混改性,具体改性体系包括无机粒子填充、玻纤/碳纤增强、合金共混改性、弹性体增韧等。


关于纤维增强PPS材料的研究较多,其增强机理主要包括2方面: (1) 纤维体系能承载部分载荷,从而避免应力集中; (2)其能吸收冲击时产生的部分能量,避免已经形成的裂纹进一步扩散。


将不同工程塑料进行共混改性,实现性能互补,也是改性方法之一。如聚亚苯基砜/聚苯硫醚共混物体系,改善了聚亚苯基砜吸水率较高、耐溶剂性较差及PPS抗冲击性能较差的缺陷,实现了互相补充和完善。

       图片弹性体增韧塑料


弹性体材料的抗冲击性能较好,与PPS材料复合后,当材料受到外力冲击时,作为应力集中点,引发大量银纹,吸收了大量能量,使复合材料的冲击性能显著提升。研究结果表明,添加POE-g-MAH增韧体系后,MAH基团能增强其与PPS及玻纤的界面作用,从而更加有效地吸收冲击能量。当质量分数为6%时,复合材料的缺口冲击强度提升25%,是PPS/GF体系的高效增韧改性剂。


2 导热改性


PPS作为高分子材料,与金属材料及无机非金属材料相比,其导热性能较低,导热系数普遍低于0.5W/(m·K)。为了满足特定的应用场景,如新能源汽车动力电池及5G通讯在高频工作环境下散热,需要对PPS材料进行导热改性。


目前,改性方法主要包括采用金属填料及无机材料进行填充,其中,金属填料对于导热性能的提升显著,但降低了绝缘性能,不适用于需要散热绝缘的场合。无机填料主要包括氧化物、氮化物、碳化物、无机碳材料等。

       图片        

对填充型导热绝缘复合材料而言,其导热性能主要依赖于聚合物基体和填料之间的协同作用。随填料含量增加,导热粒子相互接触,在基体内部形成导热网链,传递热量,实现提升复合材料的导热性能。复合材料的导热性能则主要取决于填料的导热性,同时也受填料形状、种类、粒径尺寸、组分构成等因素的影响。


氧化物及氮化物,如氮化硼、氮化铝、氧化铝、氧化镁等,导热性能均较好。采用氧化镁对PPS材料进行导热改性,氧化镁填料含量增加到一定程度,能形成有效的导热网链,导热系数变化明显,最高可以达到1.61 W/(m·K)。

       图片氮化硼粉末


氮化物相对而言,是一种更高效的导热填料,通过先制备BN/PPS核壳结构的复合颗粒,再进行热压工艺,可以得到具有三维相分离结构的复合材料。当体系氮化硼含量为40%时,制备的复合材料的导热率可以达到 4.15 W/(m·K),与共混方法制备的BN/PPS为2.45W/(m·K)相比,热导率提高了1.69倍。二维的BN微片在PPS基体中形成了有效的三维导通网络结构,热流能够沿着该通道顺利传输,提高了其导热性能。


碳材料,如石墨烯、碳纳米管等,也是一种高效的无机导热填料。Gu等对石墨烯进行处理,然后将其与PPS混合,当功能化石墨烯含量较低时,PPS复合材料的导热性能明显提升。当其体积分数为29.3% 时,改性石墨烯在PPS基体中形成了较好的导热网链,复合材料导热系数最高能达到4. 414 W/(m·K) 。

       图片        

碳纤维在微观上是乱层石墨结构,且单层石墨结构主要沿长丝方向排布,因此,在长丝方向具有较好的导热性能,作为导热填料时,既可在一定程度上改善导热通路,也能起到增强作用。以PPS材料为基体,以中间相沥青基碳纤维为增强材料,当碳纤维含量为20%时,导热率达最高为1.88 W/(m·K)。


3 低介电改性


常规PPS材料的介电常数一般在3.4~3.5,应用于5G通讯等设备时,为提高传输效率,降低损耗,需要对介电性能进一步改进。目前改性的方法主要包括合金共混改性,低介电填料改性,以及通过特殊生产工艺改变材料的微观拓扑结构与形态。


合金共混改性及低介电填料改性主要是通过加入低介电组分,降低复合体系的介电常数。采用液晶聚合物(LCP)和PPS合金共混,同时添加了增韧相容剂,改善两者的相容性。制备的复合材料兼具LCP和PPS材料的优良性能,并且在1MHz时,合金体系的介电常数最优可以达到2.5。

       图片        

另外,通过添加介电常数较低的填料,如空心玻璃微珠及低介电玻纤等,也能有效降低PPS复合材料介电常数,在挤出成型后能够将PPS介电常数降低到3以下,同时在-40~120℃ 范围内表现较稳定。将低介电无机填料进行表面偶联化处理后,可以进一步改善复合材料的强度及介电性能,制备得到的低介电PPS复合材料具有力学性能较高,电气绝缘性能稳定,加工工艺简便等特点。

       图片空心玻璃微珠


改变材料微观拓扑结构主要是通过添加发泡体系或使用微发泡工艺,在材料中引入泡孔结构,提高材料的孔隙率,从而达到降低材料介电常数的目的。在PPS/PES和PPS/PEEK共混物体系中,微孔发泡后,共混物的拉伸强度、断裂伸长率和冲击强度均增大,介电常数降低。且研究表明,纳米孔与微孔材料相比,具有更优异的力学性能,但是对介电性能影响较小。


4 复合膜改性


锂离子电池隔膜是锂离子电池的核心部分,主要作用是将锂电池的正负极分隔开,防止两极接触,发生短路,仅允许电解质离子通过。目前,使用较多的是聚烯烃材料隔膜,但是其电解液浸润性及热稳定性较差,在高温时有明显的收缩熔融现 象。


PPS材料具有良好的热稳定性及耐化学腐蚀性,适用于对电池性能要求较高的3C及新能源汽车产业,目前改性方法主要包括对PPS隔膜表面涂覆制备复合隔膜,以及原位复合技术。

      图片        

通过非织造方法将纤维进行随机排列,形成纤网结构,但制成的无纺布孔径较大且分布不均匀,需要通过化学或物理方法进行加固成膜,改善无纺布隔膜的透气率和吸液率。王罗新等将对位芳纶纳米纤维悬浮分散液涂覆在熔喷PPS无纺布基膜上,然后进行干燥及热轧处理,得到一种熔喷PPS无纺布/对位芳纶纳米纤维复合隔膜,薄膜孔径最低可以达到0.1μm,有效解决了无纺布隔膜的孔径较大及分布不均匀的问题,且能保证隔膜的热稳定性、离子导电性能及亲液性能。


结合产业化开发的成本等因素,在该基础上进行了改性,以PPS无纺布为支撑材料,聚乙烯基硅氧烷(PVS)为涂覆材料,通过物理涂覆及干燥、热压处理,制备了PVS/PPS无纺布复合锂离子电池隔膜,与传统的聚烯烃隔膜相比,虽然厚度增加,但是仍具有良好的浸润性能,较发达的微孔结构,且比聚烯烃隔膜的放电比容量更高。


原位复合隔膜中的有机相能包裹住陶瓷颗粒及纤维,解决了涂层在表面脱落的问题,同时能够形成均一的开放式孔洞结构,但是由于团聚问题,填料的用量受到了限制。通过将PPS溶解于高沸点溶剂中,配制成均相溶液,然后利用流延机挤出并激冷,得到孔中含有高沸点溶剂的固体PPS多孔膜,再利用低沸点溶剂将PPS多孔膜中的高沸点溶剂浸出,烘干,对烘干的薄膜进行单向或者双向拉伸,热定型,冷却后得到了聚苯硫醚隔膜,熔点较高、破膜温度高、阻燃性好、厚度较薄,并且提高了锂离子电池的安全性。


在改性过程中,界面问题、轻质填料复合工艺及填料相应技术存在缺陷等均是制约PPS改性材料性能提升的重要因素,因此,提高PPS材料与其它组分间的相容性,升级优化材料及工艺,进行更多以应用为出发点的研究显得尤为重要。随着新能源及5G通讯的深入发展,PPS 材料也将迎来一个更广阔的发展空间。


参考资料:聚苯硫醚复合材料的应用及进展,互联网资料等。


相关推荐
国产化率最高的特种工程塑料:20家国内外PPS树脂聚合企业动态盘点
全球聚苯硫醚(PPS)主要企业产能超过20万吨,中国PPS聚合产业蓬勃发展中....
0
0
43
SABIC推出5G天线振子用 LDS PPS 材料
​全球化工行业的领先企业SABIC公司推出了LNP Thermocomp OFC08V化合物,这种材料非常适用于5G基站偶极天线和其他电气/电子应用。
0
0
56
高石墨填充PPS,PP在燃料电池双极板应用
今天要给大家介绍的是燃料电池双极板使用的复合材料。
0
0
81
特种工程塑料性价比之王:PPS的改性和应用
特种工程塑料的性能,普通工程塑料的价格,爱了爱了
0
0
82
新和成:目前PPS树脂和PPS复合材料全球市场需求量约11万吨
目前PPS15000吨生产线正常生产,第三期7000吨生产线在建设中,总规划为30000吨/年。
0
0
142
巴斯夫宣布阻燃PA和PBT每吨上涨500美元,塞拉尼斯全球POM征收附加费,DSM尼龙、PPS涨价
由于生产原料、阻燃剂等功能助剂供应紧张,价格暴涨,使得市场的压力剧增以及供应链成本的快速增加,材料涨价停不下来。
0
0
159
新和成“高端聚苯硫醚制造关键技术创新及产业化”项目通过科技成果鉴定
新和成通过与浙江大学产学研合作开发了高端PPS树脂成套工业化制备技术,成功合成出纤维级、注塑级和挤出级高性能PPS树脂系列化产品,有效实现了进口替代,大幅提升了我国PPS树脂及制成品在全球市场的占有率。
0
0
229
索尔维:如何通过多元化的材料组合,PPA,PEEK,PPS等解决汽车电驱动痛点?
近日,有记者采访了索尔维特种聚合物事业部大中华区交通运输行业市场经理潘禹,听他解读索尔维的电气化材料方案如何解决电驱动系统以及车用电气部件正在面临的痛点。
0
0
377
2021年中国改性塑料行业上市公司概览
2020年,国内改性塑料产量大概在1300万吨,产值约1800亿元。下游应用领域,主要是汽车,家电,电子电器,此外电动工具、照明、玩具、家具、运动器材、轨道交通、医疗、光伏等行业都有应用。
0
0
608
DIC推出用于LDS激光直接成型PPS
随着微电子行业的更新迭代、电子产品小巧紧凑、功能齐备的发展趋势,正在促使电子和机械设计人员不断寻求创新技术,以便在更小的空间内实现更多功能。为满足技术发展的需要,LDS(Laser Direct Structuring)激光直接成型技术孕育而生。
0
0
132
索尔维挤出级PPS波纹管实现更大程度的汽车轻量化
索尔维和曼派(Maincor Rohrsysteme GmbH&Co. KG)率先开发出能够制造更具灵活性、且拥有不同壁厚和直径的挤出波纹管技术。这一先进技术将有助于应对内燃机(ICE)和电动汽车技术(包括电池,电动马达和动力电子设备)结合产生的全新汽车热管理设计挑战。
0
0
126
多家厂商再次上调PPS价格,工程塑料隔三差五的涨价函,好心累
2021年开局涨价函满天飞,又一波涨价函来临,多家厂商上调了聚苯硫醚PPS价格。
0
0
140
聚真科技PPS在汽车零部件上的应用介绍
江西聚真科技发展有限公司,创办于2018年,总部及生产基地位于江西省上饶市茶亭经济开发区。
0
0
158
GPM国塑机械推出连续碳纤维增强PPS-UD热塑预浸料单向带生产线
聚苯硫醚(PPS)作为一种高性能的工程材料具备很多性能上的优势,但是由于技术原因,以前连续碳纤维增强PPS-UD带均需依赖进口。
0
0
116
国内PPS改性企业20强
聚苯硫醚(PPS)是近年来发展最快的特种工程塑料之一,具有优异的耐高温性、耐化学性、耐候性、阻燃性、以及电性能,尺寸稳定性好等优势,被广泛应用于汽车、电子电气、机械行业、石油化工、制药业、轻工业以及军工、航空航天、5G通信等领域,是应用最广泛的特种工程塑料。
0
0
173
PPS需求持续增长,现有PPS树脂厂合集
聚苯硫醚具有耐高温、耐腐蚀、耐辐射、阻燃、电绝缘等优良性能,素有“塑料黄金”之称,是八大宇航材料之一,在汽车零部件、5G通信用天线振子和滤波器以及电子电器等领域备受青睐,是当之无愧的2020年最具热度的塑料。
0
0
150
2019年度最热工程塑料:5G天线振子力助PPS登顶!
2019年6月6日,工信部正式向中国电信、中国移动、中国联通、中国广电发放5G商用牌照。基站的建设比预料的来的快。PPS在这个阶段脱颖而出,并且供不应求。我们来看看究竟。
0
0
143
巴斯夫新型聚苯砜PPSU,可用于加工复杂形状部件
巴斯夫正在以低粘度等级扩展其Ultrason P产品范围。新型聚苯砜(PPSU)Ultrason P 2010的特点是改善了注塑成型的流动性能,同时保持了Ultrason P的出色机械性能。
0
0
132